Digimorph, An NSF Digital Library at UT Austin, Texas
help
DigiMorph
Browse the Library by:
 Scientific Names
 Common Names
 What's Popular?
Learn More
Overview Pages
A Production of

Odontopteryx toliapicaFossil, Fossil Bird
Dr. Angela Milner - The Natural History Museum, London
Odontopteryx toliapica
Click for help
skull
Click for more information

The Natural History Museum (London; BMNH 44096) - holotype

Image processing: Dr. Amy Balanoff
Publication Date: 22 Mar 2010

ITIS TNS Google MSN

The imagery on this page is supporting material for a paper entitled Avian brain evolution: new data from Palaeogene birds (Lower Eocene) from England, by A.C. Milner and S.A. Walsh (2009, Zoological Journal of the Linnean Society 155:198-219). The abstract is as follows:

       Investigation of how the avian brain evolved to its present state is informative for studies of the        theropod–bird transition, and as a parallel to mammalian brain evolution. Neurological anatomy in fossil        bird species can be inferred from endocranial casts, but such endocasts are rare. Here, we use        computed tomographic analysis to determine the state of brain anatomy in two marine birds from the        Lower Eocene London Clay Formation of England. The brains of Odontopteryx (Odontopterygiformes)        and Prophaethon (Pelecaniformes) are remarkably similar to those of extant seabirds, and probably        possessed similar somatosensory and motor capabilities. Each virtual endocast exhibits a degree of        telencephalic expansion comparable to living avian species. However, the eminentia sagittalis (wulst),        a feature characteristic of all living birds, is poorly developed. Our findings support the conclusion        that much of the telencephalic expansion of modern birds was complete by the end of the Mesozoic,        but that overall telencephalic volume has increased throughout the Cenozoic through dorsal        expansion of the eminentia sagittalis. We suggest that improvements in cognition relating to        telencephalic expansion may have provided neornithine avian clades with an advantage over archaic        lineages at the Cretaceous–Tertiary boundary, explaining their survival and rapid diversification in the        Cenozoic.

About the Species

This specimen, the holotype, was collected from the Lower Eocene (Ypresian) London Clay Formation of southeast England. It was made available to The University of Texas High-Resolution X-ray CT Facility for scanning by Dr. Angela Milner of the Natural History Museum (London) and Dr. Timothy Rowe of The University of Texas at Austin. Funding for scanning and image processing was provided by Dr. Milner and by a National Science Foundation Digital Libraries Initiative grant to Dr. Rowe.

About this Specimen

This specimen was scanned by Matthew Colbert on 12 March 2003 along the coronal axis for a total of 947 slices. Each slice is 0.102 mm thick, with an interslice spacing of 0.102 mm and a field of reconstruction of 49.0 mm.

About the
Scan
Literature

Andrews CA. 1899. On the remains of a new bird from the London Clay of Sheppey. Proceedings of the        Zoological Society of London, 1899: 776–785.
Averianov AO, Panteleyev AV, Potapova OR, Nessov LA. 1991. Bony-toothed birds (Aves: Pelecaniformes:        Odontopterygia) from the Late Paleocene and Eocene of the western margin of Ancient Asia.        Proceedings of the Zoological Institute, USSR Academy of Sciences 239: 3–12.
Baumel JJ, Gerchman L. 1968. The avian carotid anastomosis. American Journal Of Anatomy 122: 1–18.
Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC. 1993. Nomina anatomica avium: handbook of        avian anatomy, 2nd edn. Cambridge, MA: The Nuttall Ornithological Club.
Beauchamp G, Fernandez JE. 2004. Is there a relationship between forebrain size and group size in birds?        Evolutionary Ecology Research 6: 833–842.
de Beer G. 1954. Archaeopteryx lithographica. London: British Museum.
Bourdon E. 2005. Osteological evidence for sister group relationship between pseudo-toothed birds (Aves:        Odontopterygiformes) and waterfowls (Anseriformes). Naturwissenschaften 92: 586–591.
Bourdon E, Baâdi B, Iarochene M. 2005. Earliest African neornithine bird: a new species of        Prophaethontidae (Aves) from the Paleocene of Morocco. Journal of Vertebrate Paleontology 25: 157–       170.
Brodkorb P. 1967. Catalogue of fossil birds. Part 3 (Ralliformes, Ichthyornithiformes, Charadriiformes).        Bulletin of the Florida State Museum, Biological Sciences 11: 99–220.
Burish MJ, Kueh HY, Wang SS. 2004. Brain architecture and social complexity in birds and dinosaurs. Brain,        Behavior and Evolution 63: 107–124.
Butler AB, Hodos W. 1996. Comparative vertebrate anatomy. New York: Wiley-Liss.
Chatterjee S. 1991. Cranial anatomy and relationships of a new Triassic bird from Texas. Philosophical        Transactions of the Royal Society of London B 332: 277–342.
Chiappe LM. 1995. The first 85 million years of avian evolution. Nature 378: 349–354.
Chiappe LM, Dyke GJ. 2002. The Mesozoic radiation of birds. Annual Review of Ecology and Systematics 33:        91–124.
Clarke JA, Tambussi CP, Noriega JI, Erickson GM, Ketcham RA. 2005. Definitive fossil evidence for the extant        avian radiation in the Cretaceous. Nature 433: 305– 308.
Cooper A, Penny D. 1997. Mass survival of birds across the Cretaceous/Tertiary boundary. Science 275:        1109–1113.
Dechaseaux C. 1970. Moulages endocraniens d’oiseaux de l’Éocène Supérieur du Bassin de Paris. Annales        de Paléontologie 56: 69–72.
Dingus L, Rowe T. 1998. The mistaken extinction. Dinosaur evolution and the origin of birds. New York: W.        H. Freedman and Co.
Domínguez P, Milner AC, Ketcham RA, Cookson MJ, Rowe TB. 2004. The avian nature of the brain and inner        ear of Archaeopteryx. Nature 430: 666–669.
Dubbeldam JL. 1998. Birds. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C, eds. The central nervous        system of vertebrates, Vol. 3. Berlin: Springer, 1525–1636.
Dyke GJ. 2001. The evolutionary radiation of modern birds: systematics and patterns of diversification.        Geological Journal 36: 305–315.
Eccles JC. 1992. Evolution of consciousness. Proceedings of the National Academy of Sciences of the        United States of America 89: 7320–7324.
Edinger T. 1926. The brain of Archaeopteryx. Annals and Magazine of Natural History : including Zoology,        Botany and Geology 18: 151–156.
Edinger T. 1951. The brains of the Odontognathae. Evolution 5: 6–24.
Elzanowski A, Galton PM. 1991. Braincase of Enaliornis, an early Cretaceous bird from England. Journal of        Vertebrate Paleontology 11: 90–107.
Feduccia A. 1999. The origin and evolution of birds, 2nd edn. New Haven and London: Yale University Press.
Gervais P. 1844. Remarques sur les Oiseaux fossils. Thèse de la Faculté de Sciences de l’Université de Paris.        Paris.
Gulas-Wroblewski BE. 2003. Incorporating fossil taxa into phylogenetic analyses of modern clades: the case        of Prophaethon. Geological Society of America Abstracts with Programs 35: 497.
Hadžiselimovic´ H, Savkovic´ L. 1964. Appearance of semicircular canals in birds in relation to mode of life.        Acta Anatomica 57: 306–315.
Harrison CJO. 1985. A bony-toothed bird (Odontopterygiformes) from the Palaeocene of England. Tertiary        Research 7: 23–25.
Harrison CJO, Walker CA. 1976a. A review of the bonytoothed birds (Odontopterygiformes): with        descriptions of some new species. Tertiary Research Special Paper 2: 1–72.
Harrison CJO, Walker CA. 1976b. A reappraisal of Prophaethon shrubsolei Andrews (Aves). Bulletin of the        British Museum of Natural History (Geology) 27: 1–30.
Harrison CJO, Walker CA. 1977. Birds of the British Lower Eocene. Tertiary Research Special Paper 3: 1–52.
Harrison GL, MacLenachan PA, Phillips MJ, Slack KE, Cooper A, Penny D. 2004. Four new avian        mitochondrial genomes help get to basic evolutionary questions in the Late Cretaceous. Molecular        Biology and Evolution 21: 974–983.
Holloway RL, Broadfield DC, Yuan MS. 2004. The human fossil record, Volume 3: brain endocasts–the        paleoneurological evidence. New Jersey: John Wiley and Sons.
Howard H. 1957. A gigantic ‘toothed’ marine bird from the Miocene of California. Bulletin of the        Department of Geology, Santa Barbara Museum of Natural History 1: 1– 23.
Iwaniuk AN, Dean KM, Nelson JE. 2004. A mosaic pattern characterises the evolution of the avian brain.        Proceedings of the Royal Society of London. Series B. Biological Sciences 271 (Suppl.): S148–S151.
Iwaniuk AN, Dean KM, Nelson JE. 2005. Interspecific allometry of the brain and brain regions in parrots        (psittaciformes): comparisons with other birds and primates. Brain, Behavior and Evolution 65: 40–59.
Iwaniuk AN, Hurd PL. 2005. The evolution of cerebrotypes in birds. Brain, Behavior and Evolution 65: 215–       230.
Jerison HJ. 1968. Brain evolution and Archaeopteryx. Nature 219: 1381–1382.
Jerison HJ. 1973. Evolution of the brain and intelligence. London: Academic Press.
Kurochkin EN. 2004. New fossil birds from the Cretaceous of Russia. Abstracts of the Sixth International        Meeting of the Society of Avian Paleontology and Evolution, Quillan 35–36. Available at        http://nrm.museum/ve/birds/sape/SAPE_ abstracts_2004.pdf
Lefebvre L, Nicolakakis N, Boire D. 2002. Tools and brains in birds. Behaviour 139: 939–973.
Lefebvre L, Reader SM, Sol D. 2004. Brains, innovations and evolution in birds and primates. Brain, Behavior        and Evolution 63: 233–246.
Lefebvre L, Whittle P, Lascaris E, Finkelstein A. 1997. Feeding innovations and forebrain size in birds. Animal        Behaviour 53: 549–560.
Madden J. 2001. Sex, bowers and brains. Proceedings of the Royal Society of London. Series B. Biological        Sciences 268: 833–838.
Marsh OC. 1880. Odontornithes: a monograph on the extinct toothed birds of North America. U.S.        Geological Exploration of the 40th Parallel, Vol. 7.
Mayr G, Smith R. 2002. A new record of the Prophaethontidae (Aves: Pelecaniformes) from the Middle        Eocene of Belgium. Bulletin de l’institut Royal des Sciences Naturelles de Belgique. Sciences de la        Terre 72: 135–150.
McKee JWA. 1985. A pseudodontorn (Pelecaniformes: Pelagornithidae) from the middle Pliocene of Hawera,        Taranaki, New Zealand. New Zealand Journal of Zoology 12: 181–184.
Medina L, Reiner A. 2000. Do birds possess homologues of mammalian primary visual, somatosensory and        motor cortices? Trends in Neuroscience 23: 1–12.
Mlíkovský J. 1980. Zwei Vogelgehirne aus dem Miozän Böhmens. Casopis pro mineralogii a geologii, roc? 25:        409– 413.
Mlíkovský J. 1981a. Ein fossile Vogelgehirn aus dem Oberpliozän Ungarns. Fragmenta Mineralogica et        Palaeontologica 10: 71–74.
Mlíkovský J. 1981b. Relationships of the Eocene bird ‘Numenius’ gypsorum Gervais. Bulletin de la Muséum        national d’Histoire naturelle, Paris, C, Sciences de la Terre, Paléontologie, Géologie Minéralogie 4:        341–343.
Mlíkovský J. 1988. Notes on the brains of the middle Miocene birds (Aves) of Hahnenberg (F.R.G.). Casopis        pro mineralogii a geologii, roc? 33: 53–61.
Mouritsen H, Feenders G, Liedvogel M, Wada K, Jarvis E. 2005. Night-vision brain area in migratory        songbirds. Proceedings of the National Academy of Sciences of the United States of America 102:        8339–8344.
Nicolakakis N, Lefebvre L. 2000. Forebrain size and innovation rate in European birds: feeding, nesting and        confounding variables. Behaviour 137: 1415– 1429.
Olson SL. 1985. The fossil record of birds. In: Farner DS, King JR, Parkes C, eds. Avian biology, Vol. 8. New        York: Academic Press, 79–252.
Olson SL. 1994. A giant Presbyornis (Aves: Anseriformes) and other birds from the Paleocene Aquia        Formation of Maryland and Virginia. Proceedings of the Biological Society of Washington 107: 429–435.
Owen R. 1873. Description of the skull of a dentigerous bird (Odontopteryx toliapica) from the London Clay        of Sheppey. Quarterly Journal of the Geological Society of London 29: 511–522.
Pearson R. 1972. The avian brain. London and New York: Academic Press.
Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Streidter G,        Wild M, Ball GF, Durand S, Gütürkün O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L,        Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED. 2004. Revised        nomenclature for avian telencephalon and some related brainstem nuclei. The Journal of Comparative        Neurology 473: 377–414.
Robertson DS, McKenna MC, Toon OB, Hope S, Lilligraven JA. 2004. Survival in the first hours of the        Cenozoic. Geological Society of America Bulletin 116: 760– 768.
Saiff EI. 1974. The middle ear of the skull of birds: Procellariiformes. Zoological Journal of the Linnean        Society 54: 213–240.
Saiff EI. 1976. Anatomy of the middle ear region of the avian skull. Sphenisciformes. Auk 93: 749–759.
Saiff EI. 1978. The middle ear of the skull of birds: the Pelecaniformes and Ciconiiformes. Zoological Journal        of the Linnean Society 63: 315–370.
Sipla J, Georgi J, Forster C. 2003. The semicircular canal dimensions of birds and crocodilians: implications        for the origin of flight. Journal of Vertebrate Paleontology 23 (Suppl.): 97A.
Slack KE, Jones CM, Ando T, Harrison GL, Fordyce RE, Arnason U, Penny D. 2006. Early penguin fossils, plus        mitochondrial genomes, calibrate avian evolution. Molecular Biology and Evolution 23: 1144–1155.
Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L. 2005. Big brains, enhanced cognition, and response        of birds to novel environments. Proceedings of the National Academy of Sciences of the United States        of America 102: 5460– 5465.
Sol D, Timmermans S, Lefebvre L. 2002. Behavioural flexibility and invasion success in birds. Animal Behaviour        63: 495–502.
Stingelin W. 1957. Vergleichend morphologische untersuchungen am vorderhirn der Vögel auf cytologischer        und cytoarchitektonischer grundlage. Basel: Verlag Helbing and Lichtenhahn.
Striedter G. 2005. Principles of brain evolution. Sunderland, MA: Sinauer Associates.
Timmermans S, Lefebvre L, Boire D, Basu P. 2000. Relative size of the hyperstriatum ventrale is the best        predictor of feeding innovation rate in birds. Brain, Behavior and Evolution 56: 196–203.
Walsh SA. 2001. The Bahía Inglesa Formation Bonebed: genesis and palaeontology of a Neogene Konzentrat        Lagerstätte from north-central Chile. Unpublished PhD Thesis, University of Portsmouth.
Webster SJ, Lefebvre L. 2001. Problem solving and neophobia in a columbiform-passeriform assemblage in        Barbados. Animal Behaviour 62: 23–32.
Wellnhofer P. 1991. The illustrated encyclopedia of pterosaurs. London: Salamander Books Ltd.
Wingstrand KG. 1951. The structure and development of the avian pituitary. Lund: Håkan Ohlssons        Boktryckeri.
Winkler H, Leisler B, Bernroider G. 2004. Ecological constraints on the evolution of avian brains. Journal of        Ornithology 145: 238–244.
Witmer LM, Chatterjee S, Franzosa J, Rowe T. 2003. Neuroanatomy of flying reptiles and implications for        flight, posture and behaviour. Nature 425: 950–953.
Zhou Z. 2004. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil        evidence. Naturwissenschaften 91: 455–471.
Zusi RL, Warheit KI. 1992. Evolution of the intramandibular joint of pseudodontorns. In: Campbell KE, ed.        Papers in Avian Palaeontology Honoring Pierce Brodkob. Science Series Natural History Museum of Los        Angeles County 36: 351–360.

Literature
& Links

None available.

Additional
Imagery

To cite this page: Dr. Angela Milner, 2010, "Odontopteryx toliapica" (On-line), Digital Morphology. Accessed January 18, 2025 at http://digimorph.org/specimens/Odontopteryx_toliapica/.

©2002-20019 - UTCT/DigiMorph Funding by NSF
Comments